GCE

Mathematics

Advanced GCE

Unit 4723: Core Mathematics 3

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1

Either:	Obtain $\frac{1}{3} a$	B1
	Attempt solution of linear eqn	M1

Obtain $-3 a$
Or: Obtain $9 x^{2}+24 a x+16 a^{2}=25 a^{2}$
Attempt solution of 3-term quad eqn

Obtain $-3 a$ and $\frac{1}{3} a$

B1
condone $|x|=\frac{1}{3} a$
with signs of $3 x$ and $5 a$ different; allow M1 only if a given particular value and no recovery occurs; allow M1 only if a in terms of x attempted; allow M1 only if double inequality attempted but with no recovery to state actual values of x
A1 3 as final answer
B1
M1 as far as substitution into correct quadratic formula or correct factorisation of their quadratic; allow M1 only if a given particular value
A1 (3) or equivs; as final answers; and no others 3

2 Draw graph showing reflection in a
horizontal axis
Draw graph showing translation

Draw (more or less) correct graph which must at least reach the negative x-axis, if not cross it, at left end of curve

M1 parallel to x-axis, in either direction; independent of first M1; not earned if curve still passes through O but ignore other coordinates given at this stage

A1 but ignoring no or wrong stretch in y-dir'n; condone graph existing only for $x<0$; consider shape of curve and ignore coordinates given
State $(-5,24)$ and $(-3,0)$ wherever located B1 4 or clearly implied by sketch; allow for coordinates whatever sketch looks like; allow if in solution with no sketch
4

3
 3

4 (i) Obtain $R=25$
Attempt to find value of α

Obtain 16.3°

B1 allow $\sqrt{625}$ or value rounding to 25
M1 implied by correct answer or its complement; allow sin/cos muddles; allow use of radians for this mark; condone $\sin \alpha=7, \cos \alpha=24$ in the working
A1 3 or greater accuracy $16.260 \ldots$; must be degrees now; allow 16° here
(ii) Show correct process for finding one answer M1 Obtain (28.69-16.26 and hence) 12.4° A1
even if leading to answer outside 0 to 360 or greater accuracy $12.425 \ldots$ or anything rounding to 12.4
Show correct process for finding second answer
Obtain (151.31-16.26 and hence) 135° or 135.1°

M1 even if further incorrect answers produced

A1 4 or greater accuracy 135.054...; and no other between 0 and 360
[SC: No working shown and 2 correct angles stated - B1 only in part (ii)]
\square

5 Integrate to obtain form $k(3 x-2)^{\frac{1}{2}}$

Obtain correct $4(3 x-2)^{\frac{1}{2}}$
Apply limits and attempt solution for a

Obtain $a=9$

State or imply formula $\int \frac{36 \pi}{3 x-2} \mathrm{~d} x$

Integrate to obtain form $k \ln (3 x-2)$

Obtain $12 \pi \ln (3 x-2)$ or $12 \ln (3 x-2)$
Apply limits the correct way round
Obtain $12 \pi \ln 25$ (or $24 \pi \ln 5$)

M1 any non-zero constant k; or equiv involving substitution
or (unsimplified) equiv such as $\frac{6(3 x-2)^{\frac{1}{2}}}{3 \times \frac{1}{2}}$
assuming integral of form $k(3 x-2)^{n}$; taking solution as far as removal of root; with subtraction the right way round; if sub'n used, limits must be appropriate
(this answer written down with no working scores $0 / 4$ so far but all subsequent marks are available)

B1 or (unsimplified) equiv; condone absence of $\mathrm{d} x$; allow B1 retroactively if π absent here but inserted later
*M1 any constant k including π or not; condone absence of brackets
A1 $\sqrt{ }$ following their integral of form $\int \frac{k}{3 x-2} \mathrm{~d} x$
M1 dep *M; use of limit 1 is implied by absence of second term; allow use of limit a
A1 9 or exact equiv but not with $\ln 1$ remaining; condone answers such as $\pi 12 \ln 25$ and $12 \ln 25 \pi$

6 (i) Attempt use of quotient rule

Obtain $\frac{3\left(x^{3}-4 x^{2}+2\right)-(3 x+4)\left(3 x^{2}-8 x\right)}{\left(x^{3}-4 x^{2}+2\right)^{2}}$

Equate numerator to 0 and attempt simplification

Obtain $-6 x^{3}+32 x+6=0$ or equiv and hence $x=\sqrt[3]{\frac{16}{3} x+1}$

M1 or equiv; allow numerator wrong way round but needs minus sign in numerator; for M1 condone 'minor' errors such as sign slips, absence of square in denominator, and absence of some brackets
or equiv; allow A1 if brackets absent from
$3 x+4$ term or from $3 x^{2}-8 x$ term but not from both

M1 at least as far as removing brackets, condoning sign or coeff slips; or equiv

A1 4 AG; necessary detail needed (i.e. at least one intermediate step) and following first derivative with correct numerator
(ii) Obtain correct first iterate having used
initial value 2.4

Apply iterative process

Obtain at least 3 correct iterates from their starting point
Obtain 2.398
Obtain -1.552

B1 showing at least 3 dp (2.398 or 2.399 or greater accuracy $2.39861 \ldots$...)
M1 to obtain at least 3 iterates in all; implied by plausible, converging sequence of values; having started with any initial non-negative value

A1 allowing recovery after error
A1 value required to exactly 3 dp
A1 5 value required to exactly 3 dp ; allow if apparently obtained by substitution of 2.4; answers only with no iterates shown gets $0 / 5$

$$
[2.4 \rightarrow 2.3986103 \rightarrow 2.3981808 \rightarrow 2.3980480]
$$

7 (i) State $\ln \left(x^{2}+8\right)=8$
Attempt solution involving e^{8}

Obtain $\sqrt{\mathrm{e}^{8}-8}$
(ii) State f only

State e^{x} or e^{y}
Indicate domain is all real numbers

B1 or equiv such as $x^{2}+8=\mathrm{e}^{8}$
M1 by valid (exact) method at least as
far as $x^{2}=\ldots$
A1 3 or exact equiv; and no other answer
B1
B1 or equiv; allow if g , or f and g , chosen
B1 3 however expressed
(iii) Attempt use of chain rule

Obtain $\frac{2 \ln x}{x}$
Obtain $6 \mathrm{e}^{-3}$
(iv) Attempt evaluation using y attempts

Obn $k(\ln 24+4 \ln 12+2 \ln 8+4 \ln 12+\ln 24)$ A1
Use $k=\frac{2}{3}$ and obtain 20.3
M1 whether applied to gf or fg; or equiv such as use of product rule on $(\ln x)(\ln x)+8$

A1 or equiv
A1 3 or exact equiv but not including \ln
M1 with coeffs 1,4 and 2 occurring at least once each; whether fg or gf
any constant k
A1 3 or greater accuracy (20.26...) but must round to 20.3
[Note that use of Simpson's rule between 0 and 4 with two strips, coeffs $1,4,1$, followed by doubling of result is equiv;
SC: Use of Simpson's rule between 0 and 4 with four strips followed by doubling of result allow 3/3 - answer is 20.2 (20.2327...)]

8 (a) (i) Draw at least two correctly shaped branches, one for $y>0$, one for $y<0 \mathrm{M} 1$
Draw four correct branches
Draw (more or less) correct graph
otherwise located anywhere including $x<0$ now (more or less) correctly located;
with some indication of horiz scale (perhaps only 4π indicated); with asymptotic behaviour shown (but not too fussy about branch drifting slightly away from asymptotic value nor about branch touching asymptote) but branches must not obviously cross asymptotic value; with -1 and 1 shown (or implied by presence of sine curve or by presence of only one of them on a reasonably accurate sketch); no need for vertical (dotted) lines drawn to indicate asymptotic values
(ii) State expression of form $k \pi+\alpha$ or

$k \pi-\alpha$ or $\alpha=k \pi+\beta$ or $\alpha=k \pi-\beta$	M1	any non-zero numerical value of k; M0 if degrees used
State $3 \pi-\alpha$	A1 2 or unsimplified equiv	

(b) (i) State $\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

B1 $\mathbf{1}$ or equiv such as $\frac{t+t}{1-t \times t}$ or $\frac{2 \tan A}{1-\tan ^{2} A}$
(ii) State or imply $\tan \phi=\frac{1}{4}$

Attempt to evaluate $\tan 2 \phi$ or $\cot 2 \phi$
Obtain $\tan 2 \phi=\frac{8}{15}$ or $\cot 2 \phi=\frac{15}{8}$
Attempt to evaluate value of $\tan 4 \phi$

Obtain $\frac{240}{161}$
Obtain final answer $\frac{225}{322}$

B1 or equiv such as $\frac{1}{\tan \phi}=4$

A1 or (unsimplified) exact equiv; may be implied
A1 6 or exact equiv
[SC - (use of calculator and little or no working)
State or imply $\tan \phi=\frac{1}{4} \quad$ B1; Obtain $\tan 2 \phi=\frac{8}{15} \quad$ B1; Obtain $\frac{225}{322} \quad$ B1 (max 3/6)
State or imply $\tan \phi=\frac{1}{4} \quad$ B1; Obtain $\frac{225}{322} \quad$ B2 (max $\left.3 / 6\right)$ 12
(i) (a) Differentiate to obtain $k_{1} \mathrm{e}^{2 x}+k_{2} \mathrm{e}^{-2 x}$

Obtain $2 \mathrm{e}^{2 x}+6 \mathrm{e}^{-2 x}$
Refer to $\mathrm{e}^{2 x}>0$ and $\mathrm{e}^{-2 x}>0$ or to more general comment about exponential functions

M1 any constants k_{1} and k_{2} but derivative must be different from $\mathrm{f}(x)$; condone presence of $+c$
A1 or unsimplified equiv; no $+c$ now

A1 3 or equiv (which might be sketch of $y=\mathrm{f}(x)$ with comment that gradient is positive or might be sketch of $y=\mathrm{f}^{\prime}(x)$ with comment that $y>0$; AG
(b) Differentiate to obtain $k_{3} \mathrm{e}^{2 x}+k_{4} \mathrm{e}^{-2 x}$

Obtain $4 \mathrm{e}^{2 x}-12 \mathrm{e}^{-2 x}$
Attempt solution of $\mathrm{f}^{\prime \prime}(x)>0$ or of $\mathrm{f}(x)>0$ or of corresponding eqn
Obtain $x>\frac{1}{4} \ln 3$
Confirm both give same result
any constants k_{3} and k_{4} but second derivative must be different from their first derivative; condone presence of $+c$

A1 or unsimplified equiv; no $+c$ now

M1 at least as far as term involving $\mathrm{e}^{4 x}$ or $\mathrm{e}^{-4 x}$
A1
B1 5 AG; necessary detail needed; either by solving the other or by observing that same inequality involved (just noting that $\mathrm{f}^{\prime \prime}(x)=4 \mathrm{f}(x)$ is sufficient)
(ii) Differentiate to obtain $2 \mathrm{e}^{2 x}-2 k \mathrm{e}^{-2 x}$

Attempt to find x-coordinate of stationary pt M1
Obtain $\mathrm{e}^{4 x}=k$ and hence $\frac{1}{4} \ln k$ or equiv A1
Substitute and attempt simplification

Obtain $g(x) \geq 2 \sqrt{k}$ or $y \geq 2 \sqrt{k}$
or unsimplified equiv
equating to 0 and reaching $\mathrm{e}^{4 x}=\ldots$ or equiv or equiv such as $\mathrm{e}^{2 x}=\sqrt{k}$
using valid processes but allow if only limited progress [note that question can be successfully concluded (without actually finding x) by substitution of $\mathrm{e}^{2 x}=\sqrt{k}$ and $\mathrm{e}^{-2 x}=\frac{1}{\sqrt{k}}$]
A1 5 or similarly simplified equiv with \geq not $>$ 13

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

